What is a Solid State Drive?
Solid state is an electrical term that refers to electronic circuitry that is built entirely out of semiconductors. The term was originally used to define those electronics such as a transistor radio that used semiconductors rather than vacuum tubes in its construction. Most all electronics that we have today are built around semiconductors and chips. In terms of a SSD, it refers to the fact that the primary storage medium is through semiconductors rather than a magnetic media such as a hard drive.
Now, you might say that this type of storage already exists in the form of flash memory drives that plug into the USB port. This is partially true as solid state drives and USB flash drives both use the same type of non-volatile memory chips that retain their information even when they have no power. The difference is in the form factor and capacity of the drives. While a flash drive is designed to be external to the computer system, an SSD is designed to reside inside the computer in place of a more traditional hard drive.
So how exactly do they do this? Well, an SSD on the outside looks almost no different than a traditional hard drive. This design is to allow the SSD drive to put in a notebook or desktop computer in place of a hard drive. To do this, it needs to have the standard dimension as a 1.8, 2.5 or 3.5-inch hard drive. It also will use either the ATA or SATA drive interfaces so that there is a compatible interface.
Why Use a Solid State Drive?
Solid state drives have several advantages over the magnetic hard drives. The majority of this comes from the fact that the drive does not have any moving parts. While a traditional drive has drive motors to spin up the magnetic platters and the drive heads, all the storage on a solid state drive is handled by flash memory chips. This provides three distinct advantages:
Less Power Usage
Faster Data Access
Higher Reliability
The power usage is a key role for the use of solid state drives in portable computers. Because there is no power draw for the motors, the drive uses far less energy than the regular hard drive. Now, the industry has taken steps to address this with drive spin downs and the development of hybrid hard drives, but both of these still use more power. The solid state drive will consistently draw less power then the traditional and hybrid hard drive.
Faster data access will make a number of people happy. Since the drive doesn't have to spin up the drive platter or move drive heads, the data can be read from the drive near instantly. In a recent demo of two similar equipped notebook computers, Fujitsu was able to demonstrate a roughly 20% speed increase in the booting of Windows XP on a SSD over a standard hard drive.
Reliability is also a key factor for portable drives. Hard drive platters are very fragile and sensitive materials. Even small jarring movements from an impact can cause the drive to be completely unreadable. Since the SSD stores all its data in memory chips, there are fewer moving parts to be damaged in any sort of impact.
Why Aren't SSDs Used For All PCs?
As with most computer technologies, the primary limiting factor of using the solid state drives in notebook and desktop computers is cost. These drives have actually been available for some time now, but the cost of the drives is roughly the same as the entire notebook they could be installed into. This is gradually changing as the number of companies producing the drives and the capacity for producing the flash memory chips grows. Drives announced at the 2007 CES were priced at less than half of the drives of the same capacity from the previous year.
The other problem affecting the adoption of the solid state drives is capacity. Current hard drive technology can allow for over 200GB of data in a small 2.5-inch notebook hard drive. Most SSD drives announced at the 2007 CES show are of the 64GB capacity. This means that not only are the drives much more expensive than a traditional hard drive, they only hold a fraction of the data.
All of this is set to change soon though. Several companies that specialize in flash memory have announced upcoming products that look to push the capacities of the solid state drives to be closer to that of a normal hard drive but at even lower prices than the current SSDs. This will have a huge impact for notebook data storage.
RunCore 128GB Pro SATA 70mm Mini PCI-e PCIe SSD for ASUS EEE PC 900 900A 901 and S101
Part#: RCP-I-S7028-C
Brand Name: RunCore
MB/GB Size: 128GB
Read/Write Speed: 125/95